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A REDUCED CONSTRAINT hp FINITE ELEMENT METHOD 
FOR SHELL PROBLEMS 

MANIL SURI 

ABSTRACT. We propose and analyze an hp finite element method for the 
Nagdhi shell model, based on rectangular elements. We show that for the 
bending-dominated case, assuming sufficient smoothness on the solution, the 
method is locking free in terms of both h and p, as the thickness of the shell 
tends to zero. Our results are established under the assumption that the 
geometrical coefficients appearing in the model are piecewise polynomial func- 
tions. 

1. INTRODUCTION 

In recent years, several new commercial finite element codes with hp capabili- 
ties have been developed (e.g. MSC/PROBE, STRESSCHECK, POLYFEM.(IBM), 
Applied Structure (Rasna Co.), PHLEX, etc.). Such codes allow the use of both 
mesh refinement (h version) and increase of polynomial degree (p version) to attain 
accuracy. Due to the increasing engineering interest in.p and h-p methods, an im- 
portant question that arises is the search for robust, locking-free p and hp elements 
for plate and shell problems. 

In this paper, we propose and analyze an hp method based on the Naghdi shell 
model [9, 10]. In this model, the unknown displacement and rotation vectors are 
obtained as the minimizers of an internal energy function which combines the en- 
ergy due to bending, transverse shear and membrane stresses. As the thickness d 
of the shell approaches zero, various constraints on the exact solution appear in the 
"bending-dominated" case. These ensure that the energy remains finite as -d 0. 
Often, finite element spaces being used to discretize the model cannot handle such 
constraints while still retaining their approximation properties. This leads to the 
phenomenon of locking, which manifests itself as an unacceptably large discretiza- 
tion error, even for highly refined meshes, when d is small. See [4, 7] for general 
discussions of the locking problem. In the Nagdhi shell model, both transverse 
shear and membrane constraints appear as d -- 0, leading to shear locking and 
membrane locking in the bending-dominated case. 

The two main strategies commonly used for overcoming locking are the use of the 
standard variational form with high-order elements and the use of modified vari- 
ational forms (including mixed and reduced integration methods). In the former, 
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which we call exact constraint methods, the idea is to choose finite element spaces 
that are enriched enough to satisfy the constraints exactly. This is usually done 
by using high-order h methods or using p/hp methods. In the latter, the effect of 
the constraint is weakened, by enforcing it only approximately. Often, low-order 
(h version) elements are used. We call such methods reduced constraint methods. 
The above approaches have been rigorously investigated for various problems (other 
than shells) involving locking (see, e.g. [14, 16] for exact constraint approaches and 
[8, 15] for reduced constraint approaches). 

In the case of locking for shells, however, even though there are several schemes 
that have been proposed in the engineering, literature, the convergence properties 
of most schemes have not been mathematically established. A notable exception is 
the work of Pitkaranta (e.g. [12]) in which locking for cylindrical shells (including 
a reduced constraint scheme proposed by Bathe and Dvorkin) has been analyzed. 
One of the conclusions that emerges from Pitkaranta's work is that high-order 
p-type schemes do particularly well in combatting locking for shells. 

In this paper, we present and analyze an hp finite element method for shells 
which combines the two approaches of using high-order elements and weakening 
the constraints. Our element is based on a reduced constraint method recently 
proposed by Arnold and Bezzi [1] which uses a mixed formulation for the Nagdhi 
shell model with a stabilizing term that stabilizes it in the bending-dominated case. 
(This 'is the case for which locking.occurs, the membrane-dominated case, leading to 
"pure membrane" deformation in the limit, is free of locking for smooth solutions.) 
Using this stabilizing mixed formulation, Arnold and Brezzi developed- a family 
of mixed triangular elements for which they proved that the convergence of the 
displacement and rotation vectors, does not deteriorate as d -+ 0 (i.e. the method 
is locking-free in the terminology of [4]). Their results were only in terms of the h 
version and did not address the question of p-convergence, when successively higher- 
order elements from the family are used. Here, we formulate rectangular elements 
based on the modified variational form in [1]. As in the case of triangular elements 
in [1], we-propose a family of such elements, one for each polynomial degree p. 
We consider not only the stability and convergence of t-his family in terms of the 
mesh parameter h, but also the polynomial degrep p, showing that the family is 
robust in terms of both h and p (unlike the correspon'ding triangular elements from 
[1], no additional bubble functions are needed for stability here). Our analysis 
therefore validates not only the h version, but also the p and hp implementation 
of these reduced constraint methods. It also validates a spectral element approach 
(see Remark 3.5). 

In [1], Arnold and Brezzi used an assumption of the geometrical coefficients in 
the variational formulation being piecewise constant. As we show here, the case 
when the coefficients are piecewise polynomials of degree m can also be treated, 
-provided'we use polynomials of sufficiently higher degree for the primary variables 
(this is easily accomplished in the p/hp versions). We show that the asymptotic 
p-convergence rate remains optimal in this case, and indicate, in Remark 3.7, what 
can be expected for the case of arbitrary geometric coefficients. Our analysis here 
is only carried out for the case of parallelograms, though we formulate our elements 
for general quadrilate'rals. We believe that our results provide valuable insight into 
p and hp versions for more general shell and element geometries as well. (See 
Remark 3.4 in this context, which discusses the treatment of boundaries). 
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The plan of the paper is as follows. Section 2 describes the Naghdi model and 
introduces the modified variational form from [1]. In Section 3, we describe the ap- 
proximate method and present our main theorem. The proof is presented separately 
in Section 4. In order to properly analyze the p convergence, we do not analyze 
the problem as a mixed method (as in [1]), but rather use the approach in [7] (see 
Remark 4.2). Essentially, we prove uniform estimates for the approximations as 
the solution tends to an inextensional (pure bending) one. (See Remark 3.4.) 

2. THE VARIATIONAL FORMULATION FOR THE NAGHDI SHELL MODEL 

In this section, we describe the Naghdi shell model in its variational form. In 
this we closely follow Section 2 of [1]. 

As in [1], we let Greek indices range over 1, 2 and Latin indices over 1, 2, 3, with 
products containing repeated indices being summed. Also, 3-vectors v' = (vi) are 
indicated by overarrows, 2-vectors by undertildes (v = (va)) and 2 x 2 symmetric 

tensors by double undertildes (A = (Ag,)) with A!,8 = A,,8,. If V is a space of scalar 

functions, then vi E V, v E V or A E V will imply that each component is in V. 

The Naghdi shell model involves various coefficients related to the geometry, 
which we now describe. Let us assume, for simplicity, that the midsurface of the 
shell can be represented as ir(Q) where ri is a smooth one-to-one mapping of Q into 
R3, where Q is a bounded open set in R2. Moreover, let ri be such that a1 =rxi 
and ad2 = rX2 are linearly independent at each point of Q. Then, defining a3 to 
be the unit vector along a' x a2, the shell (of thickness d E (0, 1]) will occupy the 
region 

{i(x) + x3a3 (x) xQ -< x3 < } CR3 
rl l rl 2 2 

Next, let the first and second fundamental forms of r'(Q) be defined by the matrices 

92~~~~~~r 
a,,g = a, a,g be,8 = a3* ,axBax 

and let a be the determinant of the matrix (ao,t,), a 7/ 0 on Q. We denote the 
inverse of (ao,t,) by (aO) and set 

- = aa'g, ba - a0b,y, aaO^'6 - a +Fvaa7) 
1 - .2(a '~ a~a) 

where E > 0 and v E [0, -) are the Young's modulus and Poisson ratio respectively. 

Finally, we define the Christoffel symbols F6` 6=a 
Let Hk(Q) denote the usual Sobolev spaces, with L2(Q) = H?(Q). Let 1D 7 0 

be a portion of aQ and define 

H() = {V E Hr(Q) IVD =01} for r > 1, 

V = {(V,@) | HD(Q),+ E HD(Q)} 

with the norm in V given by 

2v 
v 

=I'Vlv 1 bII, + kbH11. 

We will assume that our solution (U', 0) E V, i.e. we. will assume clamped con- 

ditions along 1D* Suppose d3fai is the resultant of the -forces applied on the 
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midsurface, then the Naghdi model determines the displacement ui = (ui) and ro- 
tation 0 = (0,>) as the solution of the variational problem: Find U = (it, 0) e V 

satisfying 

(2.1) )?a(U, V) + d 2 (4 (U) I (V)) 1 +d -2 (A(U), A(V))2 = F(V) 

for all V= (v,f )) E V, 

where 

a(U, V) a 12 a3(?s v, )dx, 
12 

(fiu (U )) I ID X aa (Da (UE 4 (i0)u 4 (v'J,b)iV d x, ov X 

~~~~~2(1 + vo) l 

(A(U), A(V))2 = j a&3SAco (it)Ay6(i) xadx, 

F(V) = jfuui adx. 

In the above, ', 4?, and A are the change of curvature tensor, the transverse shear 

strain tensor, and the membrane strain tensor, respectively. For any u = (wi), 
0 = (00,) with ui, 0, E H1(Q), these are defined by 

(2.2) 

'I'/(it, 0) = [0a,0 + Oo,a - b (ua,,3 - 6V^) - by (u-, ur6a) + bybOu3] 

- r6 06, 

(2.3) @a(i, 0) = 3, + b7au + 0O, 

(2.4) Aao (it) = (uoe,8 + u3,) - r6 5- bu3. 

In the bending-dominated case, as d -* 0, the loads are scaled as d3f ai and the 
bending energy a(U, V) dominates. In the membrane-dominated case, the load is 
scaled as dfa'i and as d -* 0, the bending energy term d2a(U, V) is the one that 
tends to zero, with the solution tending to a pure membrane state. The latter case 
is actually the more common in applications (since the shell can be loaded by a 
larger amount this way)., Smooth pure membrane deformations! are free of locking 
and standard finite element methods work well here. 

Here, we are interested in developing a method that is uniformly robust as d -- 0 
in the bending-dominated case. It may be seen from (2.1) that for the energy to 
remain finite as d -O 0, we must now have the following constraints in the limit: 

(2.5) 4(U) = 4D(it, 0) = O, A(U) = A(86) = 0. 

When (2.1) is discretized, the finite element space used may not have enough func- 
tions satisfying (2.5) (for instance, the only such function in the space may be 
(it, 0) 0_ ). This is what causes locking, and to remove it, as we see below, the 

finite element solution will be required to satisfy (2.5) only in a weaker sense. 
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Let us note another problem with the formulation (2.1): the form a(U, V) is 
not coercive over the space V. This makes the development of locking-free approx- 
imation methods more difficult. In [1], a simple rewriting of (2.1) was used to 
overcome this problem. Let co be an arbitrary positive constant, independent of d 
(say co < 1). Define 

A(U, V) = a(U, V) + co(I (U), I (V))1 + co (A(U) IA(V))2, t-2 = d-2 _ Co. 

Then (2.1) is equivalent to 

(2.6) A(U, V) + t-2(I1(U), I(V)), + t-2(A(U),A (V))2 = F(V) 

where t -O 0 as d -O 0, and by the results in [5], 

(2.7) A(U, V) > CHUV. 

(The above rewriting idea has been used in other contexts before-see e.g. [12] and 
[4, equation (3.1)].) By Theorem 2 of [1], problem (2.6) will have a unique solution, 
with IJUIIv bounded by JIFIIv*, the norm of F in the dual space of V. 

3. THE APPROXIMATE METHOD 

Suppose now that VN C V is a sequence of finite element spaces, parametrized 
by N. While finding the finite element solution, in order to reduce the effect of the 
constraints (2.5), we will only require that 

(3.1) PNJ(U) =0, PNA(U) = O 

where for any X E L2(Q), Y E L2(Q), 

PXES C L2(Q) and PNY E SN2C L2(Q) 

are defined as orthogonal projections, 

(3.2) (X-P2X,W)1=O VWESN, (Y-PY, V)2 = 0 VV E S2. 

Assuming that a sequence of such spaces SN, SN has been defined, the finite element 
approximation to U is given by the solution UN E V of 

A(UN, V) ? t (PN(UN), PN(V))1 

(3.3 ? N(PA(UN), PNA( V))2 = F(V) VV E VN. 

Using (2.7), it is easily seen that problem (3.3) has a unique solution for each t and 
N. Method (3.3) has been termed as "partial selective reduced integration" in [1]. 
Note that in terms of implementation, the projections PN, PN in (3.2) can be calcu- 
lated elementwise (if SN, SN are free of interelement continuity constraints). Also, 
introducing two auxiliary variables, (2.6), (3.3) can be formulated as equivalent 
mixed formulations-see [1]. 

In the above, the "reduction" operators PNj, PN are clearly characterized com- 
pletely by SN, SN. To see what properties SN, SN should possess, we note the 
following result. The proof is essentially the same as that for equation (27) of [7]. 
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Theorem 3.1. Let U E V be the solution of (2.6) and UN E VN the solution of 
(3.3). Then, for any WN E VN, 

IIU - UNI|V < C(IIU -WNIIV + fl(I - Pk)(t-24D(U))tIo 

+ || P_)(t2A(U))Ilo + t-2 |flP (U - WN)H|O 

+ t-2 1fPkA(U -WN)1O) 

where C is a constant independent of U, N. 

Let us define 

(3.4) ((U) = t-24'(U) and ij(U) = t-2A(U) 

((, 71) are related to the transverse shear stresses and membrane stresses, respec- 

tively). Then, Theorem 3.1 gives the following corollary. 

Corollary 3.1. Let ZN(U) = {WN E VNIPN4(U - WN) = 0, PN2A(U - WN) = 

0} C VN. Then, 

(3.5) 
||U - UNiIV 

<C ( inf IU - WNIIV + II(I -PN) ((U)) II0 + 110( - P U 
\WNCGZN (U) 

Remark 3.1. If we take Pk _I in (3.5), Corollary 3.1 reduces essentially to the 
corresponding theorem for standard (exact constraint) methods, see Theorem 2.2 
of [4]. The last two terms are additional consistency terms when PK 7/ I. A more 
general form of Corollary 3.1, when PK are more general reduction operators (as 
opposed to projections in an L2 type inner product), may be found in [13]. 

From Corollary 3.1, we see the requirements on SN , SN. These should be large 
enough so that ((U), ij(U) can be approximated well. Also, they should be small 

enough so that ZN(U) has enough functions to ensure the infimum in (3.5) is small. 
We now present a choice of spaces VN, SN, SN for which the above criteria hold. 

Assume that Q is a polygon and let {JN} be a sequence of meshes of parallelo- 
grams on Q such that 1D is a union of edges of the elements for each JN. Let Q be 
the reference square (_1, 1)2 and assume that each K E JN is given by K = FK(Q), 
where FK is an affine invertible mapping. Let hK, PK be the diameter of K, and the 
largest circle that can be inscribed in K, respectively, and let hN = maXKc JN hK- 

We assume there exists a constant C, independent of N, such that for all K E JN, 

(hK/PK) < C. Further, we assume that for each pair K1, K2 E JN, K1 n K2 is 
either an entire side, a vertex, or the empty set. 

Let v be a function defined on Q (or oQ). With v, we associate the function v 
defined on K (or AK) by 

(3.6) v= 'boFj 

for v a scalar. For b a vector or 2 x 2 symmetric tensor, each component of v is 
defined as in (3.6). 

For an interval I C R, we denote Pp (I) to be the set of polynomials of degree 
< p on I. We denote the set of polynomials of degree < p in each variable on Q by 
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Qp(Q). For each N, let PN > 0 be an associated integer. We define 

(3.7) Vk(JN) = {v e Hr(Q)I VIK o FK e Qk(Q) for all K E JN}. 

We make the assumption that the quantities aa,3, ba,8, 1t, occurring in our bilinear 

form belong to V,?(JN) for some integer m > 0. Then we set 

(3.8) VN = {(V, q) E VIvi, qc E VpN+m+2(JN)}b 

(3.9) SN = {lbE{ L2(Q)Ii1tc C VPN(JN)}, SN = {A E L2(Q)IAc/ E VPN(JN)}. 

Hence the components in SN are of m + 2 degrees less than those in VN. Note that 
for m = 0, unlike the triangular elements in [1], no extra bubble functions are used 
in the definition of VN here. (The case m = 0 was the only one considered in [1].) 

Equations (3.7)-(3.9) could also be used to define general quadrilateral or curvi- 

linear elements, in which case FK would no longer,be affine. Our analysis here will 
be restricted, however, to parallelograms. We have the following theorem, the proof 
of which is given in the next section. 

Theorem 3.2. Let a3, b, , r^1 E V? (JN), m > 0. Let U = (a,0) E V, UN = 

(IN, ON) E VN be the solutions of (2.6), (3.3) respectively and let ,(U), ij(U) be as 

in (3.4). Then for any 0 < co < 1, d C (0,1] and ? > 0,1 

IIU-UNIIV = 1|U UN1 + 1? 0 Ii 
(3.10) <ChlP7 INJ 

(3.10) <11r + 110lJr + 111(U)1Ir-1 + 11iq(U)11r-1), 

where r (real) satisfies r > 3/2, ,a = min(pN + 1,r - 1), -y = r - 1 if r > 2, 
-y - 2r -3-- if 3/2 < r < 2 and where C is a constant independent of hN, PN, U 
and d but dependent on r and E. 

Remark 3.2. We see from the above theorem that the rate of convergence is 

O(h?PN+lp-(r-l)) for the case that the norms on the right-hand side are bounded 
for r > PN + 2. Technically speaking, this is optimal in terms of hN, since by (3.5), 
the best rate of convergence that can be expected with this method when d is not 
small is 0(hW+ 1), due to the use of polynomials of degree PN for SN . Hence, by 
the definition in [4], there is no locking in terms of hN. However, effectively, we are 
seeing a loss of O(hKl-m) compared to the optimal approximation rate by polyno- 
mials of degree PN + m + 2, which is what we are using for the primary variables. 

In terms of PN, the uniform estimate we get is the expected rate of 0(pj(r 1)), i.e. 
there is no locking in the asymptotic rate, provided r > 2. For 3/2 < r < 2, there 

is possible locking of Q(pl/2+E) 

Remark 3.3. Let us mention that in practice, the right-hand side of (3.10) may 
not be bounded except for small r, due to the presence of boundary layers. In 
this case, the above rates could be recovered only if some special care (e.g. extra 
refinement) is given to the approximation of the boundary layers. Such a strategy 
is discussed in [13] for plate problems. Essentially, the grid in a strip of Q0 adjacent 

to &Q should be of mesh spacing hN (hO r;,- d1 2PN hN for the methods discussed 

Iere and in the sequel, ? will denote a small.positive number. 
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in [13] for the Reissner-Mindlin plate). Then the rate of convergence that could 
be expected in the absence of boundary layers is preserved. The results in [13] do 
not depend upon explicit formulas for the boundary layer. Based on recent work 
by Piila and Pitkiranta (see e.g. [11]), in which asymptotic estimates for shells as 
d -- 0 are derived, we expect that a similar treatment would be successful in the 
case of shell problems. 

Remark 3.4. If the above refinement is carried out near the boundary, our paral- 
lelogram elements could be combined with the triangular elements of [1] to better 
approximate the boundary. The rate of convergence in terms of hN is the same for 
the two types of elements, so that using a refined mesh spacing h% in Qo would 
lead once more to approximation of the boundary layer. Meanwhile, the effect of 
using high PN for the parallelogram elements in Q\Q0 would still be preserved (we 
believe that similar rates in PN could be expected from triangles as well). Hence, 
although we have carried out our hp analysis only for parallelograms, this is not a 
serious limitation when taken in the context of the above ideas. 

Remark 3.5. The elements we use are the usual quadrilateral ones that are popular 
in the field of spectral element methods [6]. This suggests implementation by 
spectral element techniques, which often exploit the tensor product nature of the 
spaces to good advantage in terms of computational time. 

Remark 3.6. Our analysis here is limited to the bending-dominated case, and does 
not answer the question of how well the "partial selective reduced integration" 
may behave in the membrane-dominated case. In fact, as noted by Pitkiiranta 
(private communication), the coercivity can break down in the limit for this case 
(depending on the choice of spaces). Hence, the best strategy might be to combine 
the method here (for the bending-dominated case) with the standard FE method 
(for the membrane-dominated case). In fact, the standard FE method is easily 
accomplished, simply by setting c0 = d-2 in the above method. (Note, also, that 
shear and membrane locking effects could be treated separately as well as taking 
two separate parameters cl, c2 instead of co.) 

Remark 3.7. For the case of arbitrary geometric coefficients, we can first approxi- 
mate them by piecewise polynomials of degree MN, and then use the above spaces 
(with m = MN increasing with N). This introduces an additional O(d-2 f (N)) con- 
sistency error. If the coefficients are smooth, f (N) decreases superexponentially as 
N increases, so that this term will not dominate in the error. Such an approach 
can also be used to analyze non-parallelogram elements, where the non-constant 
(smooth) Jacobians may be lumped with the general geometric coefficients. A full 
analysis using this approach will be given in a future work. The question of finding 
the minimal spaces VN that can be used will also be considered. (The basic idea 
is to use the p version to control locking by adding the minimal number of extra 
functions to VN while keeping the spaces SN fixed.) 

4. PROOF OF THEOREM 3.2 

To prove Theorem 3.2, we need a series of technical lemmas, culminating in 
Lemma 4.4, which gives an error estimate for a projection operator HN. Once this 
estimate is established, the proof of Theorem 3.2 follows in a few lines (see the end 
of this section). We start by defining a projection operator, Ik,: Hl+6 (Q) '- Qk (Q) 
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as follows: 

(4.1) (IHIku) (Ni) = u(Ni) for each node Ni of Q, 

(4.2) j(Hku)(s)q(s)ds = ju(s)q(s)ds, Vq E Pk-2(e), for each edge e of Q, 

(4.3) JJ IkU)(Y)q(Y = JJ du()q(Y)dY, Vq E Qk-2(Q) 

Equations (4.1)-(4.3) give a unique IHIku E Qk(Q) for any u E Hl+&(Q). Using 
Green's Theorem, we see from the above definition that for loel < 1 

(4.4) JJ D'(u- Hku)qdx' = 0 for all q G Qk-2(Q). 

Next, we prove some further properties of Il,k 
Let Li(x) be the Legendre polynomial of degree i > 0 and define L1l(x) = 

L-2(x) = 0. Also, let for i > 0, -yi = (2i + 1)-1 and define -Y-1 = 1. Then we set 

(4.5) Ui(x) = -Yi- (Lj(x) - Li2(x)), i > 0. 

We may easily verify that 

(4.6) Ui'(x) = Li-j(x), i > 0. 

Obviously, {Ui}k 0 forms a basis for Pk(I), I = (-1, 1), and so the products 
Ui(x)Uj(y), 0 < i, j < k will form a basis for Qk(Q). Hence, if v E Q(Q), the 
set of all polynomials on Q, then we may write 

00 00 

(4.7) v(x,y) = ZZaijUi(x)Uj(y) 
i=0 j=O 

where the sum will be finite. Also, for vk(x,y) E Qk(Q), we may write 
k k 

(4.8) vk (x,y) = E E bij Ui ()U(y) . 
i=0 j=0 

For v E Q(Q) given by (4.7), we now calculate Vk = HkV (assumed to be given 
by formula (4.8)). First, since Ui(?1) = 0 for i > 1, we may obtain using (4.1), 
(4.7), (4.8), 

(4.9) bij = aij , O < i, j < 1. 

Next, consider the sides x = ?1. Then, using (4.9), we may integrate (4.2) by parts 
to obtain 

(4.10) J vky(?1ly)r(y)dy = f1vy(?1 y)r(y)dy Vr E Pk-l(I). 

Let r(y) = L,,-1 (y), n = 2,.. ., k, in (4.10). Using (4.7), (4.8), with x = ?1, 

1 k 1 0 

JZ(boj ? bjj)Lj- (y)Ln-1(y) dy = (aoj ? aj)Lj-(y)Ln-1(y) dy 
1=1 j-1 

from which 

bO = aOn bl = ali n 2 . k 
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Similarly, from the sides y = ?1, 

bnO = an0l bnl = anl, n = 2, ... ., k. 

Finally, it may be easily verified (see Lemma 4.1 of [15]) that conditions (4.3) give 

bij = aij, 2 < i,j < k. 

Hence, for v given by (4.7), we have 

k k 

(4.11) (Iv)(x,y) = E E aij Ui (x) Uj (y). 
i=0 j=0 

We will also use the one-dimensional projection v - lrkV(?I1) E P(I) defined on 
Hl/2+E(I) by 

1 lrkmV(?l) = v(?1), J (ikv - v)q = 0, q G tPk2(I). 

For v E Ho (I), Irk is seen to just be the H1 projection of v into Pk(I). Using this 
fact and a duality argument, it may be shown that 

(4.12) ||(-XkV) ||O,I < ||V IIO I, 

(4.13) LT7rkV - vHo,I < K llv/11o1l. - (k-i1) 

Denoting rxk, irx to be the projection in variables x, y respectively, we may verify 
that 

(4.14) Il k = k= (ir 0 I)(I 0 kr) 

Let us now estimate v - I-Iklll,Q. 

Lemma 4.1. For v given by (4.7), 
00 00 

(4.15) E E 4Yiyj (yi_iyj_1aij + Yi+lYj+lai+2,j+2 

(4.15) 
0 Q 

i=0 j=0 

- Yi+1Yj-1ai+2,J - yi_1Yj+1ai,j+2), 

00 00 

(4.16) 2 OQ = 4 _4y- ai(y j-ai j+lai,j+2)- 
i=1 j=0 

00 00 

(4.17) |IVyIIO0Q = EZ 4yiyji(-yii1aij -yi+lai+2,j)2. 
i=0 j=1 

Proof. The above results follow easily by the orthogonality properties of Legendre 
polynomials and their derivatives. In particular, they are established as in 
Lemma 4.2 of [15]. o 

Obviously, a similar lemma holds for (4.8) or (4.11). Using this lemma and the 
characterization (4.11), we obtain the following result, which generalizes Lemma 
4.3 of [15]. 
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Lemma 4.2. For any v c Hr(Q), r > 3/2, let lkv E Qk(Q) be defined by (4.1)- 

(4.3). Then 

(4.18) IIHkVII1,Q ? C (k1/2 1V 1,Q + k-1/2 E E kv 1'ee) 

where e are the edges of Q. 

Proof. It is sufficient to prove the result for the operator Ilk defined only on Q(Q). 
Then by [2, pages 13-14], there is a unique norm preserving extension of Ilk to 
Hr(Q), r > 3/2, which coincides with the definition via (4.1)-(4.3). Thus, let 
v E Q(Q) be given by (4.7), so that IHkV is given by (4.11). Then, using (4.16), 

k k-2 

1 (IkV)x lQ = 4 4i-iyj (yj-laij - yj+lai,j+2)2 
i=1 j=O 

(4.19) k 
?+ Z(4Yi-l1k-1 (7k-2ai,k-1)2 + 4yi-1yk(7k-jaik)2) 

i=1 

< IlVx 112,Q +B. 

To bound B, let k be odd (say). Then for each i = 1, ... , k, we can use a telescoping 
sum to write 

(k-3)/2 

yk-2ai,k-1 =- E (y2m-lai,2m -Y2m+jai,2m+2) + aio. 
m=O 

Squaring and using the fact that Yk-1 < yj for j <k - 1, 

47Y-iTh-1 (k1k-2ai,k-1 )2 

? (k-3)/2 2 

< C | k S 4Yi-1Y2m(72m-jai,2m - 72m+lai,2m+2)2 + ?i-17k-la 2o 
m=O 

Using a similar argument for 4-yi-1 yk(-yk-1aik)2, and substituting in (4.19), we have 

Vll kV)xHO,Q ? C (iclvxr OQ ? Z(yi-lzyklajo ? zYi-lYkai1)) - 

Treating the terms 11(HkV)YllQ and 11(llv)lloQ by a similar method, we obtain 
k 

11(VlkV)x|1,Q ?< (kIIvx|l,Q + (7i-1k-la7o ? yi-lyka2l) 
i=1 

(4.20)~~~~~~ -IV eho eoti 

11 HkV 12, C klv112 Q+ :(7i-17k-ja 2a + 7y,t_ lka 2) 

j=l 



26 MANIL SURI 

We now bound the last two terms in (4.20). We have, using (4.7), 

1+1 j+1 (0) 
v2 (?1, y)dy= d X y E+ y)y=d (aoj ? aij) Lj 1 (y) )d 

00 

= Z 2yji1 (aoj ? a1j)2. 
j=0 

Hence, 

(4.21) 

E(7k-1yj_a1 ?j + yk7j-lal2j) < (J 2 (v+ 1 y) dy + v2(-1 y)ddy) 
j=1 1 

Using a similar argument for the other term in (4.20), and combining with (4.21), 
we get the lemma. O 

Remark 4.1. For functions v that vanish on aQ, the projection Ilk coincides with 
the projection Sk defined in [15]. By the sharpness of the bound for Sk (Remark 
4.1 of [15]), we conclude that the loss of the factor k1/2 in (4.18) is sharp as well. 

Lemma 4.3. For any v E Hr(Q), r > 3/2, and any e > 0, there exists a constant 
C depending on r, e such that 

IIV- IlkvJJ1,Q < Ck-" JIVHlr,Q, 

where y = r-1 if r > 2, and -y = 2r-3-e if 3/2 < r < 2. 

Proof. Given v E Hr(Q), let vk E Qk(Q) satisfy conditions (4.1), (4.2) (with v 
instead of u), and also 

||VVk Vq dx'=| Vv Vqdx Vq Ek Q(Q). 
Q Q 

Then, vk is the projection of v on Qk (Q) discussed in [3], and by the results in that 
reference, 

(4.22) IV- vk 111,Q< Ck-(r-1) HIVHlr,Q, 

(4.23) IIV- Vklll,e < Ck-(r-3/2)HlVllr,Q for each edge of Q. 

Hence, using Lemma 4.2, (4.22) and (4.23), 

(4.24) 

IIV - HIkVllq,Q < JIV - VkJJ1,Q + JHk(V - Vk)l1,Q 

< ||V-Vk 11,Q + C (k /2V - Vk 1 ,Q + k1/2 E ||V - Vk 1 ,e) 

? ICk(r3/% V .eEOQ 

< Ck- (r-3/2) JIVIlr,Q 
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Now, suppose r > 2. Then, using (4.12)-(4.14), 

IIV - IIkVllo,Q = (V - q) - Ik(V - q) 11,Q 

11 (v - q)- ?(k I) (I I 0 r) (v - q) 11O,Q 

= llv - qJ,Q ? (k-i) l(I 0 r,)D (v - q)1o,Q 

< llv-q q+,Q (k- )2 2(v-q)IIo,Q. 

Similarly, using (4.12)-(4.14) again, 

JJVV - VHkVJO,Q < 1IV(v - q)| ? (k 1) +ID2 (v - q)1o,Q. 

By equation (4.1a) of [3], we then get 

(4.25) -IkVlll,Q < Ck-(r-l) Vr,Q r> 2. 

Interpolating between (4.24) and (4.25) gives the result. O 

Using the projection IIk on the reference element, we now define the operator 
1N : HD ) VplN++2(JN) by 

(4.26) (HNU)JK = (IpN+m+2(UIK ?FK)) ? F1 for all K E JN. 

(Note that (4.1)-(4.2) ensure continuity across element boundaries.) Since the 
mappings FK are affine, (4.4) implies that for lal < 1, 

(4.27a) JJ D'(u-IINu)qdx = O for all K EJN,q E VPN+m(JN). 
K 

Also, taking a = 0 in (4.27a), we see that 

(4.27b) JJc (u-Nu)qdx'=0 forall K E JN, C E Vm(JN),q E Vp,N(JN). 
K 

Moreover, the following lemma holds. 

Lemma 4.4. Let HN: HD'+ ) VplN+m+2(JN) be defined by (4.26). Then for any 
V E HD, r > 32 e > O, 

||V- HNVI 
? 

Chmin(PN+m+2,r-1) 
' 

N PN 

where -y is defined as in Lemma 4.3 and C depends on r, e. 

Proof. For any K E JN, and v, v related by (3.6), we have by Lemma 4.4 of [3] 

(4.28) inf IlV - WDllr,Q < Chin(k+r) lrK 
i7vEQk (Q) 

where v3 E Hr(Q), r > 0. Hence, by Lemma 4.3 and (4.28), 

(4.29) K Il- kvl1,Q <? 11 - V) - Ilk(v - )111,Q < Ck YhKll(v+ 'r)H r,rK 

Let k = PN + m + 2. Then by (4.26) and a standard scaling result, (4.29) gives 

KiV - NVJJ1,K < CpT7hmin(PN+m+2,r-l)1V11r,K 

The lemma follows by squaring and summing over all K E JN and noting that 
hK < hN. D 
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Proof of Theorem 3.2. We must bound the terms in (3.5). First, we note that 
by the usual approximation theory for the h-p version (Lemma 4.5 of [3]), with 
,U = min(pN+ ?, r -1), 

(4.31) ||(I - PN)((U) |o < Chlp7(r ) |R(U)|lr-1l ov~~ N 

(4.31) II(I - pN2 )71(U) I Io < Chl-tp- (r)|1U)| 

Next, for U (u, 0) we define WN = (Z,- ) by 

Z -HNUi, 'VI=NOc,. Zi = IlNi Oce =IN 

Then, since we assume aa, be,a Fy are in V? (JN), equation (4.27a), the definitions 
(2.3), (2.4) of 4P,A, and (3.2) imply that WN E ZN(U). Applying Lemma 4.4, we 

see that 

(4.32) |U- WN|| < Chmin(PN+m+2,r-1l)p (lujt + HO1r) 

Theorem 3.2 follows from (4.30)-(4.32). LI 

Remark 4.2. Instead of studying convergence in terms of Corollary 3.1 (as we did 
here), we could, instead, have framed our analysis in the context of mixed methods, 
as in [1]. For the pure h version, this would give us precisely Theorem 5 and 
Corollary 6 of [1], which includes estimates for the auxiliary variables in the norm 

from [1]. 
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